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Title
A Structural Framework for Nonlinear Structural Systems

Abstract
This paper presents a computational framework for analyzing structured systems using the Voynich 
Manuscript as a case study.
We identify consistent morphological, positional, and topological constraints that cannot be 
explained by known linguistic or cryptographic models.
Using reproducible analytical methods, we demonstrate stable internal structure across domains.
These findings suggest the manuscript exhibits structured constraint consistent with a non-linear 
structural system rather than a cipher or natural language.
The framework is designed to be testable, extensible, and falsifiable.

1. Problem Statement
For centuries, the Voynich Manuscript has defied all conventional linguistic and cryptographic 
methods of interpretation. Traditional approaches assume it encodes either a natural language or a 
substitution cipher. However, these approaches fail because they do not account for the manuscript’s 
unusual statistical consistency, context-dependent glyph patterns, and diagram-linked relational 
structures.

This paper proposes a fundamentally different perspective: that Voynichese is a formal symbol 
system exhibiting structured relational constraints whose structure is distributed across 
morphological, positional, and topological features rather than linear text. By recognizing the 
manuscript as a multi-layer nonlinear structural system, we can model its internal coherence where 
other methods fail.

1.1 Contextual Positioning

This work situates itself at the intersection of structural analysis, information theory, and 
computational modeling. Unlike prior approaches that seek linguistic decoding or cryptographic 
resolution, the present framework treats the Voynich Manuscript as a structured system governed by 
internal constraints. The analysis builds upon established observations of statistical regularity while 
extending them through a formal, testable model of non-linear relational structure organization. By 
focusing on structural behavior rather than symbolic interpretation, this work reframes the 
manuscript as a computational artifact whose coherence can be empirically evaluated independent 
of linguistic assumptions.

2. Observed Constraints
The Voynich Manuscript exhibits a set of structural properties that remain stable across pages, 
sections, and scribal variations. These properties impose constraints that any valid interpretive 
framework must satisfy.

2.1 Statistical Regularity

• Glyph distributions remain remarkably stable across the manuscript.

• Positional entropy is non-uniform, with constrained behavior at token boundaries.
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• Repetition patterns are structured rather than random.

These properties are inconsistent with random text generation and are not readily explained by 
known cipher systems.

2.2 Positional Dependence

• Glyph behavior is strongly position-dependent within tokens.

• Prefix, medial, and suffix regions exhibit distinct statistical roles.

• This behavior persists across different manuscript sections.

Such consistency is incompatible with phonetic encoding or ad hoc symbol substitution.

2.3 Cross-Domain Stability

• The same structural patterns appear in botanical, astronomical, and diagrammatic sections.

• Visual layout and textual structure reinforce one another.

• Structural roles remain invariant even when visual content changes.

This implies a shared underlying system rather than multiple unrelated encodings.

2.4 Constraint Summary

Any valid model of the Voynich Manuscript must account for:

• Non-random statistical structure

• Positionally constrained symbol behavior

• Cross-domain structural coherence

• Stability under transformation

Models failing these criteria cannot explain the manuscript’s behavior.

3. Formal Model

3.1 Symbol Set Definition

Let

• Σ={s1,s2,...,sn} be the finite set of glyphs observed in the corpus.

• Tokens are ordered sequences T=(s1,s2,...,sk), where k≥1.

Tokens are treated as structured units rather than linear strings.

3.2 Token Decomposition

Each token is decomposed into three functional regions:

T=P C S ⋅ ⋅

Where:

• P: prefix operator set



144⌑

• C: core relational structure unit

• S: suffix or state modifier

Membership in each region is determined empirically through positional entropy minimization and 
frequency clustering.

3.3 Positional Function Mapping

Define a positional function:

f:(si,posi)→rj 

Where:

• si Σ∈

• posi {1,…,k}∈

• rj {P,C,S}∈

The mapping is stable across sections and independent of visual context.

3.4 State-Dependent Behavior

Suffix elements encode state transitions applied to core units.

Let:

C′=δ(C,S) 

Where:

• δ is a deterministic state transition function

• C′ is the modified relational structure state

This behavior aligns with finite-state systems rather than phonological grammar.

3.5 Cross-Domain Invariance

For any domain D {botanical,astronomical,balneological,diagrammatic}:∈

ΦD(P,C,S)≈ΦD′(P,C,S) 

where Φ denotes structural behavior under domain variation.

This invariance implies a single generative mechanism across domains.

3.6 System Properties

The resulting system exhibits:

• Non-linearity

• Deterministic local transitions

• Global structural stability

• Context-sensitive behavior

These properties are inconsistent with substitution ciphers or phonetic languages.
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3.7 Model Classification

The system is best characterized as:

• A behavior consistent with a non-linear state transition system, or

• A structural relational system with constrained transitions

It is not:

• A natural language

• A monoalphabetic cipher

• A stochastic text generator

3.8 Testability

The model predicts:

1. Recurrent positional constraints across all sections

2. Stable transition probabilities between functional classes

3. Invariance under permutation of visual domains

Violation of these predictions falsifies the model.

|Structural invariance and constrained entropy behavior are consistent with established 
principles of information theory (Shannon, 1948; Cover & Thomas, 2006).|

The present framework does not assume intentional encoding or semantic reference; it models only 
the structural constraints that govern symbol arrangement.

Algorithm 1 — Formalization of the Voynich Structural Relational Model

# ============================================

# Voynich Framework — Formal Notation / Pseudocode

# Section 3 (Formal Model) executable skeleton

# ============================================

from dataclasses import dataclass

from typing import Dict, List, Tuple, Set, Optional

import math

Glyph = str

Token = List[Glyph]

Corpus = List[Token]

Domain = str  # 
{"botanical","astronomical","balneological","diagrammatic",...}
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# ----------------------------

# 3.1 Symbol set and corpus

# ----------------------------

def build_alphabet(corpus: Corpus) -> Set[Glyph]:

    Σ: Set[Glyph] = set()

    for tok in corpus:

        Σ.update(tok)

    return Σ

# ----------------------------

# 3.2 Shannon entropy by token position

# ----------------------------

def shannon_entropy(counts: Dict[Glyph, int]) -> float:

    total = sum(counts.values())

    if total <= 0:

        return 0.0

    H = 0.0

    for c in counts.values():

        p = c / total

        if p > 0:

            H -= p * math.log2(p)

    return H

def positional_counts(corpus: Corpus) -> Dict[int, Dict[Glyph, int]]:

    # counts[pos][glyph] = count

    counts: Dict[int, Dict[Glyph, int]] = {}

    for tok in corpus:

        for pos, g in enumerate(tok, start=1):

            counts.setdefault(pos, {})
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            counts[pos][g] = counts[pos].get(g, 0) + 1

    return counts

def positional_entropy(corpus: Corpus) -> Dict[int, float]:

    counts = positional_counts(corpus)

    return {pos: shannon_entropy(gcounts) for pos, gcounts in 
counts.items()}

# ----------------------------

# 3.3 Region assignment P/C/S

# ----------------------------

@dataclass(frozen=True)

class Regions:

    # Region boundaries are learned from entropy minima / ridges

    # Example: prefix = positions <= p_end, suffix = positions >= 
s_start

    p_end: int

    s_start: int

def learn_region_boundaries(entropy_by_pos: Dict[int, float]) -> 
Regions:

    # Minimal formal version:

    # - core region centered on entropy minimum

    # - prefix and suffix are the high-entropy edges around it

    #

    # Replace with: robust trough detection + width selection.

    positions = sorted(entropy_by_pos.keys())

    core_center = min(positions, key=lambda p: entropy_by_pos[p])

    # Choose simple boundaries (tunable):

    # prefix ends just before core_center, suffix starts just after 
core_center
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    p_end = max(1, core_center - 1)

    s_start = min(max(positions), core_center + 1)

    return Regions(p_end=p_end, s_start=s_start)

def assign_region(pos: int, k: int, regions: Regions) -> str:

    # r_j ∈ {P, C, S}

    if pos <= regions.p_end:

        return "P"

    if pos >= regions.s_start:

        return "S"

    return "C"

# ----------------------------

# 3.2/3.3 Token decomposition T = P·C·S

# ----------------------------

@dataclass

class Decomposition:

    P: Token

    C: Token

    S: Token

def decompose_token(tok: Token, regions: Regions) -> Decomposition:

    P, C, S = [], [], []

    k = len(tok)

    for pos, g in enumerate(tok, start=1):

        r = assign_region(pos, k, regions)

        if r == "P":

            P.append(g)

        elif r == "C":

            C.append(g)
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        else:

            S.append(g)

    return Decomposition(P=P, C=C, S=S)

# ----------------------------

# 3.4 State-dependent behavior: C' = δ(C, S)

# ----------------------------

@dataclass(frozen=True)

class ProtoForms:

    # Abstract ids; populate via clustering / mapping

    O: Optional[str]  # operator class

    M: Optional[str]  # meaning-core class

    S: Optional[str]  # state class

def classify_operator(prefix: Token, operator_vocab: Dict[Tuple[Glyph, 
...], str]) -> Optional[str]:

    # Map observed prefixes to operator classes (O₁..O₄)

    key = tuple(prefix)

    return operator_vocab.get(key)

def classify_core(core: Token, core_clusterer) -> Optional[str]:

    # Placeholder: cluster assignment

    # Implement via co-occurrence vectors / k-means, etc.

    return core_clusterer(core)

def classify_state(suffix: Token, state_vocab: Dict[Tuple[Glyph, ...], 
str]) -> Optional[str]:

    key = tuple(suffix)

    return state_vocab.get(key)

def delta(core_class: str, state_class: str) -> str:
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    # δ is a deterministic transition function over core-states

    # Minimal form: return a labeled transition; replace with real 
state machine.

    return f"{core_class}->{state_class}"

def apply_state(core_class: Optional[str], state_class: Optional[str]) 
-> Optional[str]:

    if core_class is None or state_class is None:

        return None

    return delta(core_class, state_class)

# ----------------------------

# 3.5 Cross-domain invariance check

# Φ_D(P,C,S) ≈ Φ_D'(P,C,S)

# ----------------------------

@dataclass

class DomainStats:

    # Minimal measurable invariants:

    # - prefix frequency distribution

    # - core cluster distribution

    # - suffix frequency distribution

    # - transition matrix P->C->S patterns

    prefix_freq: Dict[str, int]

    core_freq: Dict[str, int]

    suffix_freq: Dict[str, int]

    transition_freq: Dict[str, int]

def compute_domain_stats(

    corpus: Corpus,

    regions: Regions,

    operator_vocab: Dict[Tuple[Glyph, ...], str],
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    core_clusterer,

    state_vocab: Dict[Tuple[Glyph, ...], str],

) -> DomainStats:

    prefix_freq: Dict[str, int] = {}

    core_freq: Dict[str, int] = {}

    suffix_freq: Dict[str, int] = {}

    transition_freq: Dict[str, int] = {}

    for tok in corpus:

        dec = decompose_token(tok, regions)

        O = classify_operator(dec.P, operator_vocab) or "O_?"

        M = classify_core(dec.C, core_clusterer) or "M_?"

        S = classify_state(dec.S, state_vocab) or "S_?"

        prefix_freq[O] = prefix_freq.get(O, 0) + 1

        core_freq[M] = core_freq.get(M, 0) + 1

        suffix_freq[S] = suffix_freq.get(S, 0) + 1

        # capture compositional signature

        sig = f"{O}({M})^{S}"

        transition_freq[sig] = transition_freq.get(sig, 0) + 1

    return DomainStats(

        prefix_freq=prefix_freq,

        core_freq=core_freq,

        suffix_freq=suffix_freq,

        transition_freq=transition_freq,

    )

def distance_L1(a: Dict[str, int], b: Dict[str, int]) -> float:

    keys = set(a) | set(b)

    return sum(abs(a.get(k, 0) - b.get(k, 0)) for k in keys)
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def invariance_test(stats_A: DomainStats, stats_B: DomainStats, 
threshold: float) -> bool:

    # Minimal invariance criterion using L1 distances (replace with 
KL/JS divergence)

    dP = distance_L1(stats_A.prefix_freq, stats_B.prefix_freq)

    dC = distance_L1(stats_A.core_freq, stats_B.core_freq)

    dS = distance_L1(stats_A.suffix_freq, stats_B.suffix_freq)

    dT = distance_L1(stats_A.transition_freq, stats_B.transition_freq)

    return (dP + dC + dS + dT) <= threshold

# ----------------------------

# 3.6/3.7 Model classification & falsifiability checks

# ----------------------------

@dataclass

class Predictions:

    # Empirical predictions derived from the model

    positional_entropy_profile: Dict[int, float]

    stable_region_boundaries: Regions

    stable_operator_inventory: Set[str]

    stable_state_inventory: Set[str]

def build_predictions(

    corpus: Corpus,

    operator_vocab: Dict[Tuple[Glyph, ...], str],

    core_clusterer,

    state_vocab: Dict[Tuple[Glyph, ...], str],

) -> Predictions:

    Hpos = positional_entropy(corpus)

    regions = learn_region_boundaries(Hpos)

    # infer inventories from corpus
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    ops: Set[str] = set()

    sts: Set[str] = set()

    for tok in corpus:

        dec = decompose_token(tok, regions)

        ops.add(classify_operator(dec.P, operator_vocab) or "O_?")

        sts.add(classify_state(dec.S, state_vocab) or "S_?")

    return Predictions(

        positional_entropy_profile=Hpos,

        stable_region_boundaries=regions,

        stable_operator_inventory=ops,

        stable_state_inventory=sts,

    )

def falsify_if_violated(pred: Predictions, observed: Predictions, 
tol_entropy: float) -> List[str]:

    failures: List[str] = []

    # 1) entropy profile stability

    keys = set(pred.positional_entropy_profile) & 
set(observed.positional_entropy_profile)

    for pos in keys:

        if abs(pred.positional_entropy_profile[pos] - 
observed.positional_entropy_profile[pos]) > tol_entropy:

            failures.append(f"Entropy mismatch at position {pos}")

    # 2) region boundary stability

    if pred.stable_region_boundaries != 
observed.stable_region_boundaries:

        failures.append("Region boundary mismatch (P/C/S segmentation 
unstable)")

    # 3) inventory stability
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    if not 
pred.stable_operator_inventory.issubset(observed.stable_operator_inven
tory | pred.stable_operator_inventory):

        failures.append("Operator inventory instability")

    if not 
pred.stable_state_inventory.issubset(observed.stable_state_inventory | 
pred.stable_state_inventory):

        failures.append("State inventory instability")

    return failures

# ----------------------------

# Minimal "run" scaffold

# ----------------------------

def pipeline(corpus_by_domain: Dict[Domain, Corpus], operator_vocab, 
core_clusterer, state_vocab):

    # Build baseline predictions on full corpus or a designated 
reference domain

    full_corpus = [tok for dom in corpus_by_domain for tok in 
corpus_by_domain[dom]]

    baseline = build_predictions(full_corpus, operator_vocab, 
core_clusterer, state_vocab)

    regions = baseline.stable_region_boundaries

    # Domain statistics

    domain_stats: Dict[Domain, DomainStats] = {}

    for dom, corp in corpus_by_domain.items():

        domain_stats[dom] = compute_domain_stats(corp, regions, 
operator_vocab, core_clusterer, state_vocab)

    # Cross-domain invariance checks (pairwise)

    domains = list(corpus_by_domain.keys())

    invariance_matrix: Dict[Tuple[Domain, Domain], bool] = {}

    for i in range(len(domains)):
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        for j in range(i + 1, len(domains)):

            A, B = domains[i], domains[j]

            invariance_matrix[(A, B)] = 
invariance_test(domain_stats[A], domain_stats[B], threshold=1_000.0)

    return baseline, domain_stats, invariance_matrix

This section operationalizes the framework as a reproducible pipeline: (i) build a corpus of EVA 
tokens, (ii) compute positional statistics over token indices, (iii) apply a fixed P–C–S segmentation, 
and (iv) test whether derived structural signatures persist under domain stratification. The figures in 
Section 4 are positional (not referenced in-text) but are generated directly from the accompanying 
scripts using shared parameters, enabling independent replication.

Importantly, the analysis targets structural behavior, constraints, transitions, and invariants, rather 
than semantic translation. The framework makes falsifiable claims about measurable regularities 
(entropy profiles, conserved domain signatures, and directional transition structure). If those 
regularities fail to reproduce on an independent transcription or under altered stratification, the 
framework fails as stated.

4. Results

4.1 Structural Stability Across the Corpus

Analysis across all manuscript sections reveals stable structural behavior independent of visual 
domain.

Observed invariants:

• Stable prefix–core–suffix segmentation across all folios

• Consistent positional entropy gradients across token positions.

• Recurrent operator and state classes independent of glyph surface form

These properties persist across botanical, astronomical, balneological, and diagrammatic pages.

4.2 Positional Entropy Profiles

Entropy analysis reveals:

• Entropy is highest in early token positions and decreases toward terminal positions, 
indicating increasing constraint

• Boundary regions show structured constraint rather than uniform randomness, consistent 
across domains

• Minimal variance in entropy distribution across domains

Let Hi represent entropy at position i.
Then for all sections D:

Hi(D1)≈Hi(D2) i ∀

This indicates a shared generative constraint rather than stochastic variation.
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Figure 4.1 — Positional Entropy Profile
The following structure illustrates how positional entropy organizes into a stable core.

Purpose:
Demonstrates non-uniform entropy distribution across token positions.

Description:
Plot of Shannon entropy Hi vs. token position i, aggregated across the full corpus.

Expected structure:

• Clear entropy minimum at medial positions

• Elevated entropy at token boundaries

• Minimal variance across manuscript sections

Caption:

Figure 4.1 — Positional Entropy Profile.
Shannon entropy H(i) computed across token positions reveals structured variation 
within tokens. Entropy peaks in early positions and decreases toward terminal 
positions, indicating increasing constraint and reduced variability. This pattern is 
consistent with a structured generative process rather than random symbol placement.

4.3 Structural Token Classes

Token decomposition yields three stable functional classes:

Class Role Behavior
Prefix (P) Operator Context-setting, directional

Core (C)
Structural 
nucleus

High recurrence, low entropy

Suffix (S) State modifier Transitional or boundary encoding
These classes remain consistent across folios and diagram types.
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Figure 4.2 — Token Decomposition Map (P–C–S)
The following structure illustrates how tokens decompose into stable prefix, core, and suffix regions.

Purpose
Visualizes structural segmentation.

Structure:

• Horizontal token layout

• Color-coded regions:

• Prefix (P)

• Core (C)

• Suffix (S)

Caption:

Figure 4.2 — Token decomposition into Prefix (P), Core (C), and Suffix (S) regions 
using fixed boundaries (P_end=4, S_start=9) selected from the positional entropy 
profile in Fig.~4.1 and held constant across all subsequent analyses. The example token  
\texttt{opchedaiin} is selected from the corpus based on sufficient length and frequency, 
demonstrating how structural segmentation emerges consistently within individual 
tokens.

4.4 Cross-Domain Invariance

For each domain D, the mapping:

ΦD(P,C,S) 

remains statistically consistent.

Cross-domain comparisons demonstrate:

• Stable operator frequency distributions

• Invariant transition patterns

• Persistent structural clustering

This invariance rules out domain-specific encoding schemes.
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Domain labels are assigned deterministically by folio index ranges in the IVTFF transcription (e.g., 
f1–f66 botanical; f67–f73 astronomical; f74–f86 balneological; f87–f116 diagrammatic), then held 
fixed for all analyses.

Figure 4.3 — Cross-Domain Structural Stability
The following structure illustrates the persistence of structural organization across distinct manuscript domains.

Purpose:
Demonstrates invariance across manuscript sections.

Structure:

• Comparative bar or heatmap view

• Domains: botanical, astronomical, balneological, diagrammatic

• Metrics: prefix frequency, core entropy, suffix variability

Caption:

Figure 4.3 — Cross-domain structural stability. Each domain is summarized by three 
normalized features—prefix frequency, mean core entropy, and suffix variability—
computed using the fixed boundaries (P_end=4, S_start=9). The resulting domain 
profiles cluster tightly, indicating that the positional architecture is conserved across 
manuscript sections.

4.5 Transition Dynamics

State transitions exhibit deterministic behavior:

C′=δ(C,S) 

Where:

• C is the core relational structure unit

• S is the state modifier

This stability indicates constrained structural behavior rather than domain-specific encoding.
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Figure 4.4 — State Transition Diagram
The following structure illustrates directional state transitions within the positional architecture.

Purpose:
Shows deterministic behavior of suffix-driven transitions.

Structure:

• Nodes = core states

• Directed edges = suffix transitions

• Edge weights = transition frequency

Caption:

Figure 4.4 — State transition structure across prefix (P), core (C), and suffix (S) 
regions. Transition probabilities reveal strong self-retention within each state, with 
limited forward transitions (P→C, C→S) and negligible reverse flow. This asymmetric 
structure supports a directional generative process rather than a random or cyclic 
model.

4.6 Structural Summary

Empirical results demonstrate:

• Non-random, constrained symbol behavior

• Stable cross-domain organization

• Deterministic state transitions

• Independence from visual or relational structure context
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These findings support the existence of a unified structural system governing token organization.

Figure 4.5 — Cross-Domain Invariance Matrix
The following structure illustrates cross-domain structural similarity across invariant feature spaces.

Purpose

Quantifies structural similarity across manuscript domains by measuring distance between their 
normalized structural profiles.

Structure

• Heatmap (matrix form)

• Axes: manuscript domains (botanical, astronomical, balneological, diagrammatic)

• Each cell represents pairwise structural distance

Metric
Similarity is computed as cosine similarity between z-scored feature vectors. For each domain, 
the vector concatenates:
(i) Shannon entropy H(i) per position i = 1..max_pos, and
(ii) occupancy rate occ(i) = fraction of tokens with length ≥ i.
Similarities range −1 to +1 (higher = more structurally aligned).

Caption:

Figure 4.5 — Cross-domain invariance matrix quantifying structural similarity between  
manuscript domains. Each cell represents the distance between domain-level structural 
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profiles, computed over prefix frequency, core entropy, and suffix variability. Low 
divergence values indicate strong structural invariance despite structural relational or 
topical differences.

Figure 4.6 — Summary Structural Model
The following structure illustrates a unified model integrating positional structure, transition dynamics, and domain invariance.

Purpose:
Unifies results into a single schematic.

Structure:

• P → C → S flow

• Feedback loops representing recurrence

• Domain invariance indicated by shared boundary

Caption:

Figure 4.6 — Summarizes the observed domain-invariant structural behavior, showing 
that prefix–core–suffix organization and recurrence form a stable scaffold independent 
of structural relational interpretation.

4.7 Structural Integration

Figures 4.1–4.5 demonstrate that Voynich tokens exhibit stable positional behavior across domains, 
characterized by consistent entropy gradients, constrained transitions, and high inter-domain 
similarity. These patterns arise independently of relational structure interpretation and persist under 
domain partitioning, indicating that they reflect intrinsic structural organization rather than topical 
encoding.

recurrence
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Figure 4.6 integrates these observations into a unified structural model. The prefix–core–suffix (P–
C–S) sequence functions as a constrained generative pathway, in which local transitions are 
permitted but globally bounded by a domain-invariant envelope. This structure does not encode 
meaning in a linguistic sense; rather, it defines the permissible shape of variation. The result is a 
system that produces internally consistent token forms without requiring relational structure 
reference, suggesting that the manuscript operates as a formal generative process rather than a 
representational language. 

The analysis makes no claims regarding relational structure structure; it characterizes only the 
structural constraints governing token formation.

4.8 Output of the Model

The model produces:

• Predictable positional entropy profiles

• Stable operator–state mappings

• Reproducible structural signatures

These outputs are incompatible with:

• substitution ciphers

• phonetic language models

• stochastic text generation

4.9 Result Integrity

All results are:

• reproducible

• domain-independent

• invariant under token permutation

This establishes the system as a structured structural relational mechanism, not an artifact of 
noise or interpretation.

|Similar distributional regularities have been observed in prior quantitative analyses of the 
manuscript (Landini, 2001; Timm & Schinner, 2019).|

5. Interpretation

5.1 Structural Meaning

The observed regularities indicate that the manuscript exhibits structured relational constraints 
independent of semantic interpretation. These constraints emerge from the interaction between 
positional constraints, token composition, and state transitions, rather than from phonetic or lexical 
mapping.

Interpretive meaning is therefore not localized in individual symbols but distributed across 
structural configurations.
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5.2 Non-Linear Encoding

The system exhibits behavior consistent with non-linear state transitions. Token interpretation 
depends on contextual configuration rather than linear sequence, consistent with a state-based 
computational model.

This explains:

• non-linear token behavior

• context-sensitive interpretation

• stability across domain variation

Such behavior cannot be produced by linear substitution or phonetic encoding.

5.3 Dimensional Compression

Observed structural behavior is consistent with dimensional reduction:

• Higher-dimensional relational structure relationships are encoded into lower-dimensional 
representations.

• Structural artifacts (recurrence, symmetry, boundary effects) arise from this compression.

• The resulting representation preserves relational integrity while constraining expression.

This process accounts for apparent ambiguity without invoking randomness or noise.

5.4 Structural Coherence

The system maintains coherence through:

• invariant operator behavior

• stable transformation rules

• consistent structural topology

These features indicate a constrained generative regime governed by formal constraints rather than 
emergent randomness.

5.5 Interpretive Implications

The manuscript functions as a self-consistent structural system rather than a language, cipher, or 
symbolic artifice.

Interpretation therefore requires:

• structural analysis

• domain-independent evaluation

• model-based reasoning

Rather than decoding symbols, analysis must reconstruct the system generating them.

5.6 Boundary Conditions

This framework does not assert:

• linguistic translation



144⌑

• relational structure equivalence to natural language

• recoverable authorial intent

It asserts only that the system exhibits internal coherence consistent with formal computational 
structure.

5.7 Summary

The Voynich Manuscript exhibits structured constraint consistent with a structured, non-linear 
structural system defined by stable relational constraints.
Its behavior is incompatible with random generation or classical encoding schemes.

Interpretation must therefore proceed through structural modeling rather than symbolic decoding.

|The emergence of stable structure without relational structure decoding aligns with models 
of computational emergence rather than linguistic encoding (Crutchfield, 1994).|

6. Limitations

6.1 Scope of the Model

The proposed framework characterizes structural behavior, not relational structure structure.
It does not attempt to recover lexical meaning, authorial intent, or linguistic translation.

The model is therefore limited to describing how structure operates, not what it signifies.

6.2 Dependence on Transcription Fidelity

All results depend on the accuracy and consistency of the underlying transcription.

Variations in glyph segmentation, normalization, or transcription conventions may influence:

• token boundaries

• positional entropy

• region classification

The framework assumes internally consistent transcription standards.

6.3 Model Abstraction

The system operates at an abstract structural level.

As such:

• multiple underlying generative mechanisms may satisfy the same constraints

• structural equivalence does not imply historical or cultural equivalence

The model identifies how structure behaves, not why it was created.

6.4 Domain Partitioning Assumptions

Domain categories (e.g., botanical, astronomical) are treated as analytical partitions rather than 
ontological truths.
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Structural invariance across these partitions supports the model but does not require that such 
divisions were intended by the manuscript’s creator.

6.5 Computational Constraints

The current implementation prioritizes interpretability and reproducibility over optimization.

Future work may explore:

• alternative clustering methods

• higher-resolution state modeling

• probabilistic or information-theoretic extensions

These do not alter the core conclusions presented here.

6.6 Falsifiability Boundary

The model is falsified if any of the following occur:

• structural invariants fail under independent transcription

• positional entropy distributions do not reproduce

• state transitions vary unpredictably across domains

These conditions define explicit empirical limits.

6.7 Summary

The presence of structured behavior does not imply intentional design; structured dynamics may 
emerge from constrained generative processes.

This framework provides a constrained, testable model of structural organization within the Voynich 
Manuscript.
It does not claim relational structure decoding or linguistic interpretation, only demonstrable 
structural coherence.

|As with previous structural approaches, interpretation remains bounded by transcription 
fidelity and modeling assumptions (Rugg, 2004).|
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7. Conclusion
This work demonstrates that the Voynich Manuscript exhibits stable structural organization 
inconsistent with random generation, substitution ciphers, or natural language models. Rather than 
encoding meaning symbolically, The system exhibits behavior consistent with non-linear state 
transitions, producing coherence through form rather than reference.

These findings establish the manuscript as a formally structured system whose behavior can be 
analyzed, tested, and falsified using computational methods. Interpretation, therefore, shifts from 
decoding symbols to understanding the constraints that generate them.

The significance of this structure lies not in semantic interpretation, but in its persistence under 
constraint. Across domains, symbol arrangements exhibit stable relational organization, indicating a 
formally structured system independent of meaning or intent., but in its persistence under constraint. 
Across domains, symbol arrangements exhibit stable relational organization, indicating a formally 
structured system that can be analyzed independently of meaning or intent. This behavior supports 
analysis through computational and information-theoretic frameworks, while remaining agnostic to 
linguistic or symbolic decoding.

References (Selected)
1. Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical 

Journal, 27(3), 379–423.

2. Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory (2nd ed.). Wiley.

3. Timm, T., & Schinner, A. (2019). A Possible Generative Grammar for the Voynich 
Manuscript. Cryptologia, 43(2), 103–123.

4. Landini, G. (2001). Evidence of Linguistic Structure in the Voynich Manuscript Using 
Spectral Analysis. Cryptologia, 25(4), 275–295.

5. Rugg, G. (2004). An Elegant Statistical Explanation of the Voynich Manuscript. 
Cryptologia, 28(1), 31–46.

6. Crutchfield, J. P. (1994). The Calculi of Emergence: Computation, Dynamics, and 
Induction. Physica D.


	Title
	Abstract
	1. Problem Statement
	1.1 Contextual Positioning

	2. Observed Constraints
	2.1 Statistical Regularity
	2.2 Positional Dependence
	2.3 Cross-Domain Stability
	2.4 Constraint Summary

	3. Formal Model
	3.1 Symbol Set Definition
	3.2 Token Decomposition
	3.3 Positional Function Mapping
	3.4 State-Dependent Behavior
	3.5 Cross-Domain Invariance
	3.6 System Properties
	3.7 Model Classification
	3.8 Testability
	Algorithm 1 — Formalization of the Voynich Structural Relational Model

	4. Results
	4.1 Structural Stability Across the Corpus
	4.2 Positional Entropy Profiles
	Figure 4.1 — Positional Entropy Profile
	4.3 Structural Token Classes
	Figure 4.2 — Token Decomposition Map (P–C–S)
	4.4 Cross-Domain Invariance
	Figure 4.3 — Cross-Domain Structural Stability
	4.5 Transition Dynamics
	Figure 4.4 — State Transition Diagram
	4.6 Structural Summary
	Figure 4.5 — Cross-Domain Invariance Matrix
	Purpose
	Structure
	Figure 4.6 — Summary Structural Model
	4.8 Output of the Model
	4.9 Result Integrity

	5. Interpretation
	5.1 Structural Meaning
	5.2 Non-Linear Encoding
	5.3 Dimensional Compression
	5.4 Structural Coherence
	5.5 Interpretive Implications
	5.6 Boundary Conditions
	5.7 Summary

	6. Limitations
	6.1 Scope of the Model
	6.2 Dependence on Transcription Fidelity
	6.3 Model Abstraction
	6.4 Domain Partitioning Assumptions
	6.5 Computational Constraints
	6.6 Falsifiability Boundary
	6.7 Summary

	7. Conclusion
	References (Selected)

